
A BRIEF SURVEY ON KNOWLEDGE GRAPH UPDATE

Jiaqi Xi
Department of Computer Science

Peking University
im.sisixi@pku.edu.cn

March 30, 2020

ABSTRACT

Knowledge graph is now the mainstream of knowledge representation and storage. Obviously, our
knowledge updates at an astounding rate, so the graph should also keep up with those changes.
However, knowledge graph update is a relatively new field. It is short of targeted datasets and
satisfying models. Hence, in this survey, we look into some research that are relevant to or exploring
this field. By comparing them we conclude a better choice for updating task, and try to propose
ideas that might overcome difficulties this field is facing.

1 Introduction

Knowledge graphs have become a powerful means for representing the current status of knowledge. We decompose
knowledge into two parts: entities and relations. More specifically, a fact in a knowledge graph is basically denoted as
a triple (s,p,o), where s,p,o stands for subject, predicate, and object. For example, (US, hasPresident, Trump) could be
a triple of the current knowledge graph. Here, hasPresident is the relation between two entities: US and Trump.

Figure 1: This figure shows a simple dynamic knowledge graph. Some of the triples have time information with them.
These triples are generated or deleted following a timeline(from yellow to orange to red). The triple (US,hasPresident,
Trump) in boldface is usually a given assumption in most research, while other triple changes need to be discovered
from it.



A Brief Survey on Knowledge Graph Update

However, the president of the United States is not immutable, and Trump was not the president before he won the
election in 2016. This means some facts are not indefinitely true. Hence, temporal information should be considered
when modifying knowledge graphs. Thus, researchers introduced dynamic knowledge graphs.

Compared with static knowledge graphs, dynamic updates enable the graphs to reflect relation changes of entities.
Works on dynamic knowledge graphs deal with time information in two ways:

Table 1: Definitions and examples of Evolution and Update research.

Subfield Description Task example in figure 1

Evolution They try to solve the problem: What will hap-
pen next based on the facts already happened?
Evolution has a sequence of facts as data, and
wants the following fact as prediction.

Given (US, elect, Donald Trump), predict
the next triple: (US, hasPresident, Donald
Trump). Go further and predict (US, hasFirst-
Lady, Melania Trump).

Update They try to tackle a more realistic problem:
What exactly will happen when a fact take
place?
Update learns the relevant changes brought by
one given change.

Given the change from (US, hasPresident,
Barack Obama) to (US, hasPresident, Donald
Trump), predict the change from (US, hasFirst-
Lady, Michelle Obama) to (US, hasFirstLady,
Melania Trump). Note that changes imply the
deletion of old triples.

These two subfields both believe that the updating of a knowledge graph follows an evolution rule or causal relationship
of facts. Also, due to the difficulty of evaluating the performance of prediction or updating, link prediction is usually
their common experiment.(Link prediction is a task that fills up incomplete triples based on existing knowledge graph.)
Hence, these two subfields both aim to complete a new knowledge graph with the causal relationship they find.

Here, we show some differences between them:

Table 2: Comparison between Evolution and Update research.

Evolution Update

Focuses on predictions. Could simply be rules
that {A,B} → C.

Focuses more on changes1. Should be (A →
A′) → {(B → B′), (C → C ′)}.

Triples: 1+ → 1. A series of facts generate
one fact.

Triples: 1 → 1+. One change generates a few
more.

Time: In a sequence.
We have knowledge graphs of time 1, · · · , t,
and we want to predict the graph of time t+ 1.

Time: Almost simultaneously.
Time is not explicitly involved, but the causal
relationship between one change and the im-
plicative changes can be represented as a tem-
poral effect.

In the second section, we will discuss the comparison between different methods from these two subfields. We will
first learn how temporal information help relate the facts into an ordered sequence. As for "time", if we can shorten
the duration of evolution, then the prediction task is quite similar to updating task. From my perspective, models that
learn temporal dependencies between facts are more potential that those that merely add time to representations.

Besides, as discussed before, a common experiment is link prediction. This experiment indicates that sequences of
facts and related changes often happen among triples that share subjects, relations and, objects. So we will show how
context of a triple can help determine updates.

We have mentioned that it is difficult to evaluate the performance of updating tasks. There are more challenges like
datasets, problem definition, accuracy, etc. So in the third section, we will explain the difficulties in research on
knowledge graph updates and propose some rough ideas about future works.

1Here, a change means: When the subject, relation, or object of a triple is changed, a partially new triple is generated while the
old one is deleted. Updating task is to find some other influenced triples that undergo changes.

2



A Brief Survey on Knowledge Graph Update

2 Comparison

Updating Knowledge graphs today still requires manual efforts. Intuitively, humans learn logical rules between rela-
tions. For instance, we know that people become single when they get divorced, and they no longer have mother-in-law
or father-in-law. But it is hard for a computer to learn such rules.

To update a knowledge graph, the computer needs to learn how one fact affects another. There are some patterns that
we can follow.

We have mentioned before that in most cases, the related triples share entities or relations. This phenomenon helps
determine a scope of potential changing triples from the context. Besides, the changes usually happen either simulta-
neously(in a short period of time, update way) or in a sequence(evolution way). Hence, context and time are two key
factors we should attend to. Many methods have been proposed to apply these two patterns to updating knowledge
graphs.

2.1 Time Information

Traditional triples do not have temporal information. Many works try to add time to representations of facts: [2] manu-
ally extend the predicate sequence by setting temporal tokens for numbers indicating time and setting predicate tokens
for words like "since", "until"; [8] introduces a time dimension to represent each fact in a quadruplet (es, r, eo, t); [5]
focuses on procedural texts that implicitly incorporate time in its contexts. Given a target entity, the model finds its
location change as time passes by. Learning this state change is similar to learning a continually changing(updating)
fact; [6] views time as a pronoun of a related fact: if A evokes B then A is called the start time of B. Most works use
LSTM or other recurrent networks to learn temporal information in representations.

Figure 2: This figure shows examples of how these four methods treat temporal information in knowledge graphs or
text contexts differently.

From my perspective, [2, 8] simply add time to the representations of either predicate embedding or triples. They are
based on one assumption that time is clearly written, or that we know the exact location of time information in the
texts. Thus, these methods are more helpful for completion of a knowledge graph given structured data.

While in most realistic cases, time is implicit information. For example, we know that bornIn happens before dieIn
even if we do not know the exact time. Note that our goal is to update knowledge graphs by finding relations between
facts. Time information is one of the means for extracting these updating rules. Hence, [5, 6] shows a more generalized
understanding of time information. They both focus on one entity or one fact, and time information can be relative
time points as long as it shows a state change.

Works that treat time as a relative quantity and focus on underlying dependency between facts tend to be more adaptive
to real world updating tasks. Finding dependency between facts is also important in the upcoming discussion about
context.

3



A Brief Survey on Knowledge Graph Update

2.2 Context

Another important factor for updating is context. Here, context can be the context of an entity in a paragraph or the
surroundings of a triple in the knowledge graph.

[5, 6] understand context in the former way.

The procedural texts [5] concerns are mainly about biology and chemistry. Several changes happen in one paragraph,
which highly concentrates the update work both in time and scale. Since the whole process is included, context is
essential for LSTM to learn changes of relations between several entities.

[6] aggregates state vectors for entities undergoing a state change. Context offers two information: (1) What is the
state at time t? (2) How is the state changed compared with time t-1? This model uses seed entities to learn the scope
of context where state change happens.

Figure 3: This paragraph2 shows examples of how the methods treat context information. Entities and relations
are colored differently in the paragraph. Given the entity Trump, [5] extracts location of the fact(underlined in the
paragraph), and learn the state change. [6] uses multi-gram method like the italic words here to represent context of
an entity.

[1, 3, 4] understand context in the latter way.

[3] imitates TransE in learning sequences between two facts. Suppose that riM ≈ rj , here rj is in the context of
ri, and the chronological order between these two relations is depicted by matrix M . The network is based on the
assumption that if given two new relations whose chronological order is unchanged, then M between new relations is
almost the same.

Figure 4: In this updating task, [3] contends that (US, hasPresident, Donald Trump) is a fact that can be reached
by multiplying a learned matrix M to (US, elect, Donald Trump). Thus, a rule of change from (s, elect, o) to s,
hasPresident, o is learned. [1, 4] considers the knowledge graph as a distribution map and concerns about topological
features of the knowledge graph. Two context features are worth noticing: (1) Entity Donald Trump is moving closer
to US as their relation changes; (2) When (US, hasPresident, Donald Trump) is generated, triple (US, hasPresident,
Barack Obama) with the same subject and relation is facing deletion.

[4] introduces a multi-relational aggregator. Given one entity, it aggregates information from multi-relations in multi-
hop neighbors. [1] also uses neighbors to capture context in a knowledge graph. Furthermore, it uses an encoder-

2This paragraph is abstracted from Wikipedia: Presidency of Donald Trump.

4

https://en.wikipedia.org/wiki/Presidency_of_Donald_Trump#Transition_period,_inauguration_and_first_100_days


A Brief Survey on Knowledge Graph Update

decoder network. By assigning new positions to entities according to the text(encoder), links between entities are
added or deleted due to distance change(decoder).

The key is how we depict and learn "relation between relations". We can use a change vector, a matrix, a distribution
map, etc. They all seem capable of representing relation, but we should look further to judge which one is better. Most
works are still restricted in extracting a state change given by the text, few like [1] concerns about the updates that
should be done on the knowledge graphs but not explicitly written. For example, when a basketball player changes his
team, his team member should be changed on the knowledge graph, but it is not explicitly given by any text.

How can we handle the implicit changes? We need to learn rules of changes, like "if the subject of ri changes from si
to s′i, then the subject of rj is likely to change from sj to s′j". Such rules are statistically true, and often occur in near
neighbors. So we need a representation that leverages the knowledge graph structure and can handle multi-relations.
However, vectors and matrices are often used to depict relation between two relations. Hence, it is more possible to
find the interaction between facts if we use a distribution map instead of vectors or matrices.

2.3 Learning goals

Time information and context are concrete details that researchers look into to learn updating rules. Here, we head into
a bigger picture to analyze similarities and differences in learning goals. We separate the models into three categories:

Table 3: Three main kinds of models solving updating tasks.

Distribution Map Updating[1, 4] Sequence Representation[2, 5,
7, 8]

Temporal Relation between
Two Triples[3, 6]

Model Encoder-Decoder Encoder uses
attention of potential changing
triples to correctly place them in a
new knowledge graph. Attention
is learned according to text con-
text and knowledge graph context.
Decoder completes the knowledge
graph reconstructed by encoder.

LSTM with time-encoding se-
quences The encoding meth-
ods of time information have al-
ready been introduced above.

TransE or Vector Learn a
matrix or vector to denote a
state change. As a result, to
detect whether an exact state
change happens, apply the
learned matrix or vector to
the new context.

Attention 1 Hop-subgraph: normalized adja-
cent matrix for relation r;
Text-subgraph: text context atten-
tion vector

Temporal tokens; leverage
MRC mechanisms to extract
text spans; use soft co-reference
to tract different forms of the
same entity.

Some form of subtraction:
statet − statet−1. In detec-
tion stage, test the similar-
ity between seeds for state
change and the new data.

Task Known: (B, playerof, T2); (A,
playerof, T1) → (A, playerof, T2);
To learn: (A, teammateof, T2)

Known:
t1: (US, hasPresident, Barack
Obama);
t2: (US, elect, Donald Trump);
To learn:
t3: (US, hasPresident, Donald
Trump), delete (US, hasPresi-
dent, Barack Obama)

Known: (US, elect, Don-
ald Trump) → (US, hasPres-
ident, Donald Trump)
To learn: M that satisfies
elect ·M = hasPresident

This table concludes three kinds of current methods dealing with updating task. As is discussed before, "Distribution
Map Updating" method understands time information and context in a most intuitive way, just like how human beings
update a knowledge graph. Meanwhile, it faces the most challenges among these three methods, and is least explored
either.

As for "Sequence Representation" and "Temporal Relation between Two Triples", the former is adept at relating a
series of events by time, but lacks some ability to deal with implicit changes; the latter has a narrow view on relations
between triples, and might fail to solve multi-relation problems as data is accumulating.

Hence, by comparison we have found a relatively better way "Distribution Map Updating" to make full use of infor-
mation to tackle the updating task. Nevertheless, research on this method is facing great difficulties and strenuously
making progress. Thus, in the next section, we will discuss about the exact obstacles and propose some ideas about
what we can try next.

5



A Brief Survey on Knowledge Graph Update

3 Ideas

In this section, we talk about the difficulties that result in the slow progress of knowledge graph updating. Afterwards,
we will provide suggestions that try to reduce some of the difficulties and go further.

3.1 Difficulties

Knowledge Graph Update is a relatively new subfield. Newborn subfields tend to have some problems in common:
the lack of rigorous definition of the task and the lack of specific datasets. Besides, there is still not a common idea of
what a state-of-the-art method or model in this subfield looks like. The following explanation will show some more
details about the difficulties and how they affect this subfield.

3.1.1 Definition

We intuitively define updating task as: when an event happens(explicit), all the related triples(implicit) are either
created or deleted. Most updating works sound common sense to humans, but even common sense is achieved by
some kind of learning. Thus, we need to find a more concrete definition for computers.

As for research on knowledge graphs, it took some time for researchers to consider time information. Similarly,
moving from temporal knowledge graphs to updating knowledge graphs requires: (1) compressing a duration into a
simultaneous case; (2) finding implicit updates that happen at the same time.

How can we define a "simultaneous" update for a computer? In fact, the computer is given an explicitly changed
triple from the text, and its task is to find other implicitly changing triples. Though all the changes seem to happen
simultaneously to humans, it is deemed as an A cause B case by a computer. Such a causal relation is why we introduce
research on temporary knowledge graphs to help understand updating task.

3.1.2 Dataset

We have mentioned that most research use link prediction tasks to evaluate their performance. Completing a triple is
similar to completing a potential triple that needs change.

However, we still need specific datasets that can satisfy the definition of updating task. Change is important here. Most
link prediction tasks are simply triples related by time, but those triples may not undergo changes. Also, as is said in
definition part, we need to separate triples into explicit and implicit parts.

Furthermore, most models currently focus on a sequence of facts or relation between two facts. Hence, we lack some
multi-relation data, in which one triple change leads to a bunch of changes. Such one-to-many data is still missing.

Besides, the size of data remains a problem. People learn rules by logic or few trials, but networks usually need lots
of data. Some rules do not even have enough data. Hence, feeding a model too many data will undermine its practical
value. How to balance the value and performance of model is one of the concerns when constructing a dataset.

3.1.3 Model

Though we introduced some research on temporal knowledge graphs and evolution, the LSTM method that fits se-
quence data might not work well for updating tasks. The way they represent time and context is still instructive, but
we need a more proper model.

Encoder-decoder method is a reasonable trial. But we still face restrictions: we can only learn one rule at a time.
Would we be able to construct a model that can react to different updating tasks on its own? It is like the model has
learned how to learn a common sense of updating with few data given.

3.2 Suggestions

A few rough ideas are proposed below to either reduce some difficulties or help designing the model:

1. Although I said that updating task can be defined as a causal relation so that we could introduce the conception
of time, simultaneous changes still have advantages. If change C1 and change C2 happen simultaneously, we
can say C1 → C2 as well as C2 → C1.
So if we have a bunch of changes that will happen at the same time, we might use GAN-like methods to train
several models. We take each change as the cause and generate a bunch of models. They output the triples

6



A Brief Survey on Knowledge Graph Update

changing at the same time. These models check whether they share the same bunch of changing triples. Thus,
they could evaluate their performance and collectively optimize themselves.
Here, we should carefully choose the "cause" change, since not all changes can lead to the others. For
example, when (A, teammateof, B) is generated, it could be A or B or both of them that belong to a new team.

2. We could refer to tasks like few-shot learning. It is fact that some rules do not have enough data for normal
supervised learning.
For example, methods like separating data into a sequence of small parts(e.g. changes happen one by one) by
force enable us to make full use of limited data and selectively memorize the important ones.

3. Regarding the generality of updating model, combining meta learning with probabilistic methods might be
one way.
Use meta learning for basic rules of how one change affects another. And use probabilistic methods to
specifically deal with secondary rules or special cases.
Actually [1] is similar to this idea, instead of the fact that it replaces meta learning part with the assumption
that changes happen in 1 hop subgraph.

From my perspective, the final goal of knowledge graph update is to imitate how humans finish this task. Considering
the errors that almost always occur, I contend that errors are reasonable and affordable, while it is more meaningful if
we could concern more about the brain-like construction of models regarding updating task.

References

[1] Jizhi Tang, Yansong Feng, and Dongyan Zhao. Learning to Update Knowledge Graphs by Reading News. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2632–2641.

[2] Alberto García-Durán, Sebastijan Dumani, and Mathias Niepert. Learning Sequence Encoders for Temporal
Knowledge Graph Completion. In arXiv preprint arXiv:1809.03202, 2018.

[3] Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang, and Zhifang Sui. Encoding Temporal
Information for Time-Aware Link Prediction. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2350–2354.

[4] Woojeong Jin, He Jiang, Meng Qu, Tong Chen, Changlin Zhang, Pedro Szekely, and Xiang Ren. Recurrent Event
Network: Global Structure Inference Over Temporal Knowledge Graph. In CoRR, abs/1904.05530, 2019.

[5] Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan, Adam Trischler, and Andrew McCallum. Building Dynamic
Knowledge Graphs from Text using Machine Reading Comprehension. In arXiv preprint arXiv:1810.05682. ICLR
2019.

[6] Derry Tanti Wijaya, Ndapandula Nakashole, and Tom M. Mitchell. CTPs: Contextual Temporal Profiles for Time
Scoping Facts using State Change Detection. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1930–1936.

[7] Cristóbal Esteban, Volker Tresp, Yinchong Yang, Stephan Baier, and Denis KrompaSS. Predicting the Co-
Evolution of Event and Knowledge Graphs. In 2016 19th International Conference on Information Fusion (FU-
SION), pages 98-105.

[8] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-Evolve: Deep Temporal Reasoning for Dynamic
Knowledge Graphs. In ICML, 2017.

[9] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on Knowledge Graphs:
Representation, Acquisition and Applications. In arXiv:2002.00388, 2020.

7


	Introduction
	Comparison
	Time Information
	Context
	Learning goals

	Ideas
	Difficulties
	Definition
	Dataset
	Model

	Suggestions


